Medical education in North America changed dramatically during the late nineteenth and early twentieth centuries. Although American medical schools had begun to establish ties with major universities in the 1870s, few physicians in this country had any meaningful exposure to high quality basic science. According to William G. Rothstein, there were 65 medical schools in 1860, 75 in 1870, 100 in 1880, and 160 in 1900; in fact, 457 medical schools actually opened during the nineteenth century, but many were short-lived and about 50 were fraudulent. Admission standards shortly after the Civil War were often nonexistent and most medical schools did not require a high school diploma. The standard course of instruction consisted of two identical four-month series of lectures, the second term repeating the first, and examinations were usually brief, casual and perfunctory. The Johns Hopkins Medical School, which opened in 1893, “became the single most potent influence ever for the dissemination of scientific medical education in America.” and provided a model for the modern academic health center. With its solid link to the parent university, Johns Hopkins exerted a strong influence on Abraham Flexner, who was commissioned by the Carnegie Foundation for the Advancement of Teaching to review the state of medical education in the United States and Canada. During 1909 and 1910, Flexner visited all of the 155 medical schools then open in the two countries and wrote a scathing report that exposed the uneven standards of American medical education. Described as “a highly explosive document,” the Flexner report detailed the sorry state of most American medical schools, which had “multiplied without restraint, now by fission, now by sheer spontaneous generation.” The Flexner report forced the closure of many weaker schools and emphasized the role of the university in medical education. An important corollary to its recommendations was strengthening of the ties between clinical training and the basic sciences that were beginning to flower at the turn of the twentieth century.

The alliance between medical schools and universities began in the nineteenth and early twentieth centuries exposed American medical students to the high quality basic science that contributed to a century of discovery that has armed the modern physician with a solid understanding of disease. Today, as medicine enters the twenty-first century, we are witnessing a new revolution: the increasing impact of molecular biology on clinical practice. In seeking how best to familiarize students with a rapidly changing basic science in preparation for a career in medicine, it is useful to look back to the turmoil in medical education a century ago. This article reviews the contributions of Ernest Henry Starling, a leading British physiologist during the first decades of the twentieth century, who was a powerful advocate for strengthening the ties between medical education and university-based science.

British medical schools at the beginning of the twentieth century experienced tensions similar to those in America, although medical education in the two countries had developed differently. Proprietary medical schools, which before 1900...
had dominated medical education in the United States, had lost their importance in nineteenth-century Britain, where hospital-based bedside teaching gained momentum. In contrast to the situation in the United States and Canada, British medical schools were effectively regulated; in 1910 the London correspondent for JAMA wrote:

British medical education is conducted by a large number of diverse bodies—17 universities, 7 Royal corporations and 2 other diploma-granting bodies (that are controlled by a coordinating authority, the General Council of Medical Education and Registration — although the standard of examination varies a good deal among the different educational bodies, there is none which is not respectable or equivalent to those in use in the United States and Canada which have been censured in Mr. Flexner’s recent report.1

Although effective in clinical training, few British medical schools at that time provided excellent education in the basic sciences. Outside of lectures and perhaps his duty to teach subjects like botany and chemistry, often without careful vetting by the clinical faculty. Furthermore, the teaching of basic science was generally regarded as a distraction from patient care, the central task of the hospitals. Medical students served as unpaid workers who dressed wounds, did minor surgery, and gave anesthetics. It is easy to understand how the increasing demands on student time imposed by such growing sciences as anatomy, pathology, bacteriology, and physiology began to unravel the accommodation between hospitals and medical schools. The high cost of training laboratories for basic science research and teaching further increased tensions between clinical practice and medical education.

Battles among medical practitioners, medical schools, and university leaders during the nineteenth century are exemplified in the failed efforts of a Royal Commission on University Education in London, chaired by Viscount Haldane, Starling noted that London’s medical schools, having originated from an apprenticeship and pupilage system, had no effective relationships with the universities. Although the medical schools had established informal connections with London hospitals in the mid-nineteenth century to provide instruction in such sciences as chemistry and physiology and other preclinical subjects were initially taught by junior members of the medical staff. Starling characterized the London medical schools of that time as “trade schools.” He observed:

The teachers of science with whom [the medical student] first comes in immediate contact, in many cases not of marked ability, are in all cases in a position of inferiority to the clinical staff, whose servants they are. The work of these scientific teachers is to get the students under them as quickly as possible through the various Preliminary and Intermediate examinations, so that they may pass on to the clinical work of the wards. The scientific teacher, in fact, only useful in so far as he passes his students. The whole idea of the first three years, the most impressionable time of the student’s career, is not educational but professional.16-17

Noting that basic science teaching in these schools was intended mainly to enable students to pass their examinations, Starling observed: “The student’s interest must therefore be continually restricted to such facts as can be reproduced in an examination, so that teaching is stereotyped and originality suppressed.”

Starling recommended that universities be given “direct control of the first two and a half years or three years of the medical curriculum,” which he would expose students to the “University spirit,” which he described as not simply diagnosing the patient and deciding what we can do for him in order to earn our fee, but what we can get out of this case in order to do better next time. We should gain some knowledge out of this patient in order to have more power when we have another man in the same condition. This is the University spirit, and that is what I think you may improve and increase by having a University Professor holding one of the wards and having the clinical laboratories under his charge in a big general hospital.18-19

Starling recognized the value of teachers who were trained in both the basic sciences and clinical medicine, noting:

The men who should be now in a position to be University Professors of Medicine have not had the training; they have not had to dig down into the rut of practice at once, and they have not served their apprenticeship in laboratories and in research. You will find many good clinical men say, “If we had two excellently trained scientific men with us in the wards we could do much more for the advancement of Medicine. These men, being trained, would know all the ordinary

Ernest Henry Starling, medical educator

Ernest Henry Starling, the clinician’s physiologist

Starling was born in London in 1866, when the focus of British education was on the classics. He did not begin to study the natural sciences until 1888, after he entered Guy’s Hospital Medical School. In the summer of 1889, because of his outstanding scholarship, he was offered a chance to study in Germany, which then had surpassed Britain in providing opportunities to learn basic science. After examining the chemistry of digestion in Heidelberg, Starling returned to London where, in 1887, while still a student, he became a demonstrator in physiology at Guy’s. He received his qualifying degree (M.B., Lond.) in 1889, and began a lifelong collaboration with W. M. Bayliss of University College, one of Britain’s leading physiologists. Starling became lecturer of Physiology at University College in 1899, where, between 1901 and 1914, he carried out his seminal research on the regulation of the work of the heart.

Starling’s research was interrupted by World War I. He tried to enlist as a foot soldier, but was made a captain and assigned to head research on antiguar warfare.15 Partly because of his prickly personality and habit of speaking what was on his mind—a poor fit with military culture—Starling was promoted and transferred to a functionless position in Greece. Quietly retiring, he sought to place representatives from the Royal College of Physicians of London and the Royal College of Surgeons of England on the governing body of the University of Athens, which was rejected “almost unceremoniously.”16 A compromise was then drawn up to develop a university-based program for medical education. Although initially accepted by the Royal Colleges, the University of London, and London’s major medical schools, this compromise was “finally and utterly damned” when a convolution of the University of London voted overwhelmingly to reject the plan. The resulting fiasco led to the appointment of a new Royal Commission on University Education, chaired by Viscount Haldane, which first met in 1911.

Starling, who opposed the Haldane Commission, gave lucid and forceful testimony that established his credibility as a leading advocate for including university-based science in the medical curriculum. Best known today for his description of the opposing forces exerted by hydrostatic and oncotic pressure in controlling fluid movements across the capillary, the “Law of the Heart” that bears his name,16 and the discovery that chemical messengers circulate in the blood,17 Starling also had a keen appreciation of the importance of basic science in physician training.

First to describe this relationship,17 his influence explains why it is generally referred to as “Starling’s Law of the Heart.” The rapid acceptance of Starling’s work by the medical establishment in Britain also reflected the impact of World War I, when British physiology and medicine were cut off from the stronger science of Germany. The Royal Colleges, in turn, established an ambitious clinical program resembling that of the University of Oxford and Cambridge.7,8 Sir John Burdon-Sanderson at Oxford, and T. H. Huxley at University College in London established excellent physiology departments, few British medical students had contact with highly trained scientists.17 The British system did develop outstanding clinical investigators, including Sir James Mackenzie and Sir Thomas Lewis, but few British medical students and physicians at the beginning of the twentieth century were encouraged to participate in clinical research and there were no university-based academic clinical departments.17-18 Contrasting British and German medicine immediately before World War I, Flexner wrote:

German medicine has taken up the physiological point of view. The German clinician is a trained, often a productive physiologist. English medicine has not yet conquered physiology. With a few brilliant exceptions—the English surgeon and clinician have done little to apply physiological method and technique to clinical or surgical procedures.19

changing English medical schools from trade schools to science based—a challenge

Starling noted the poor scientific background of British leadership in 1914, when he described “The astounding and disastrous ignorance of the most elementary scientific facts displayed by members of the Government and administration alike in the early days of World War II,” adding: “The Government adopted the traditional method of positing the sore place in public opinion by the appointment of two committees.”17,18 In his testimony to the Royal Commission on University Education in London, chaired by Viscount Haldane, Starling noted that London’s medical schools, having originated from an apprenticeship and pupilage system,
Ernest Henry Starling, medical educator

laboratory methods, and we can suggest themes for them to work on.” This is not the case. Until a man has actually done research he does not know what will get through the door of the laboratory. Clinical men will come to the laboratory and will say, “I want you to tell me this or that,” and they do not understand that the question is not yet answerable. A man must have been brought up in working out problems in order to know what problem is soluble and what is insoluble at the present time.18,207

Starling’s views had a major impact on the report of the Haldane Commission, which in its final recommendations cited large sections of his testimony, including the following:

in order to raise the study of clinical medicine to the level of university education, co-operation is necessary between the men who are working at the science of medicine and those who are more especially engaged in the pursuit of the ancillary sciences The real end is to raise the teaching and the study of all subjects which bear upon medical science to a university level and, for them in the Faculty of Medicine in as close proximity to each other as possible, so that there may be not only natural and easy communication between the professors of science and those of clinical medicine, but also reciprocal assistance in the investigation of problems which occur to either.19,225

The last sentence in this recommendation echoes Starling’s earlier testimony that

the younger physicians and surgeons should be making some time almost used. . . . The more immediate relation of the scientific work of the laboratories to the problems of the ward would tend to diffuse the scientific spirit among the staff and students to a much greater extent than can be effected when, as at the present time, the scientific men attached to the School are occupied in the solution of questions which seem to have, for the practical man, little or no bearing on the problems with which he is confronted.19,199,200

Although the work of the Haldane Commission was shelved during World War I, many of its recommendations were implemented in the following decade.20

Starling’s commitment to improving medical education continued after the war when, in 1918, he criticized what he called the “incubus of the examination system.”21 His concerns were stimulated in part by a system that in the late nineteenth century “made it impossible for the average medical student with average ability and average diligence to attain the degree of M.D. in London [because] teachers of the highest rank [were required] to instruct their students according to schedules drawn up by others, often much less acquainted with the needs of the student.”22 Starling observed:

The whole examination system is at variance with the spirit of university teaching; the latter has as its object the enlargement of the mental content of the individual, the broadening of his point of view, the training of his power to deal with new situations, and his familiarization with the avenues of new knowledge. An examination tests merely the student’s power of acquisition; it determines whether he can retain for a few weeks or months a certain number of facts.21,208

Starling viewed cramming for exams as stifling the students’ “spirit of curiosity in order to confuse their whole attention to such facts that can be . . . presented in an examination.” As a result, according to Starling, the curriculum becomes “overloaded and yet not full enough”21,208 to impart to the student the “spirit of the subject and to lay a foundation for the student’s future work.”23,205 Summarizing this dichotomy, Starling wrote:

We do not want the medical man or student entering the wards to have at the tip of his tongue the properties and atomic weights of all of the elements, or to be prepared to give a historical account of the views concerning the origin of the heart beat. We do want, however, that the student shall have dipped so deeply into the sciences of chemistry and physiology that he has become imbued with the scientific spirit, and that he knows where to turn to refresh his knowledge on any matter germane to the problems which concern him in the wards.21,205

Overcoming tensions between clinical medicine and basic science

Today’s explosive growth of basic science knowledge, which far exceeds anything imagined by Starling, has sometimes led to the belief that the two should be more integrated. But Starling believed that clinical medicine was a special case of basic science and that this belief was not new. As he wrote:

clinical medicine by professors who know little about the basic science that can explain what is wrong with their patients. It can be argued, however, that although this expansion has made teaching more difficult, it has brought basic science closer to patient care. Support for this view is provided by examination of the interplay between scientific discovery and the management of heart failure.

Health, for the ancient Greeks and Romans, was generally viewed as a balance between opposing principles (the four humors); because blood was thought to contain the hot humor generated by the beating heart, bleeding was used to treat fevers. According to Hippocrates, pleural effusions occurred when plegia (the cold humor) descended from the brain to the chest. Harvey’s 1628 description of the circulation undermined Galen’s views on the heart and led Vieussens to postulate that fluid accumulates in the chests of patients with mitral steno-sis because blood flow through the lungs is slowed. However, knowledge of hemodynamics was to have little impact on patient care until the development of cardiac surgery more than three centuries later.24

In the early nineteenth century, Claude Bernard challenged the then-prevailant view that health and disease are controlled by mysterious, unquantifiable “vitalistic” forces, suggesting instead that living organisms obey physical and chemical laws.25 Thermodynamics, one set of these laws, provided a foundation for studies on the energetics of muscle contrac-

tion that dominated the work of cardiac physiologists during the late nineteenth and early twentieth centuries.26 However, physical chemistry made few contributions to patient care aside from reinforcing the view that heart failure should be treated with bed rest, a recommendation now recognized as often causing more harm than good. Starling’s description of the “Law of the Heart,” which related ventricular end-diastolic volume to the work of the heart,27 returned the focus of car-diac research to hemodynamic physiology, which, following the introduction of cardiac catheterization in the 1940s, was to play a key role in the development of cardiac surgery.

The gap between bench and bedside closed further when biochemical changes in the myocardium were recognized to impair the pumping of the failing heart. For almost 30 years, most medical students had been taught erroneously that operation of the ventricle on the descending limb of the Starling Curve was a major cause of heart failure.28 It was not until the 1950s that description of “families of Starling curves,” which demonstrated the role of changing myocardial contractility, made it possible to show that contractility is depressed in acute heart failure. This quickly led to the use of β-adrenergic agonists, whose inotropic actions had also just been discov- ered, to treat cardiogenic shock.

Heart failure—more than a misshapen Starling curve

Subsequent efforts to understand the mechanisms that depress contractility in the failing heart, which took advantage of new understanding of the role of calcium in regulating cardiac contraction and relaxation, stimulated development of powerful inotropic drugs. As expected, these drugs caused an immediate improvement in hemodynamics. However, the view that heart failure is largely a hemodynamic disorder began to unravel in the 1990s, when several clinical trials had to be stopped because inotropic drugs, even though they im-prove symptoms, shortened survival.29 Further challenges to the view that abnormal hemodynamics represent the central problem in heart failure came from trials that demonstrated that many vasodilators, which because of their energy-saving effects had been introduced to “unload” the failing left ventricle, failed to improve prognosis; in fact, many vasodilators had adverse effects so serious as to require the premature termination of clinical trials.30

Explanations for these and other unexpected findings became possible when the focus of heart failure research re-turned to the deleterious effects of cardiac hypertrophy that had been recognized by the great clinician-pathologists of the

The Pharos/Autumn 2004

The Pharos/Autumn 2004

19
research on clinical medicine: modern endocrinology is based on his discovery of circulating hormones, edema is understood in terms of his discovery of the opposing forces exerted by hydrostatic and oncotic pressure that control fluid movement across the capillary, and ventricular dilatation in acute pulmonary edema is among the manifestations of “Starling’s Law of the Heart.” In addition to his accomplishments as a scientist, Starling was an outspoken advocate for linking university science to medical education. By emphasizing the relevance of basic research to clinical practice and the importance of a solid grounding in university-based biomedical science—which Starling called the “University spirit”—he helped to lay the foundations for modern medicine. As summarized by Chapman:

Starling on education is a grand, overwhelming phenomenon, vitally expressed and carrying great conviction; and as a working scientist he is considerably more convincing than many a platitudinous educator. . . . He wrote as an educational idealist of whom there have always been too few in the field.24, 24, 24

Ernest Henry Starling, medical educator

References
8. The reconstruction of the University of London. Lancet 1921; ii: 1263–64.
16. Flexner A. Medical Education in Europe: A Report to the Carnegie Foundation for the Advancement of Teaching. New York: Carnegie Foundation for the Advancement of Teaching; 1912.

The author’s address is: 1592 New Boston Road P.O. Box 1048 Norwich, Vermont 05055-1048 E-mail: arnold.m.katz@dartmouth.edu

Ernest Henry Starling, medical educator